MPVMGG Physics HHW 2025-26 | 1. A physical quantity is measured and its value is found to be nu where n= numerical value and u = unit | | | | | |--|--|--|---|----------------------------------| | • | (b) n ∝ u | (c) n ∝ | (c) $n \propto u^{1/2}$ | | | 2. Parsec is unit of (a) time (| b) distance | (c) frequency | (d) linear mo | mentum | | | owing is dimensionless
(b) Stress | s quantity?
(c) Specific heat | (d) Quantity | of heat | | 4. Which pairs do have equal dimension? (a)Force and momentum (b) force and pressure (c) Energy and Torque (d) None of these | | | | | | 5. Which pairs do not have equal dimension ? (a)Force and impulse (b) Elasticity and pressure (c) work and Torque (d) None of these | | | | | | (a) 3
7. A suitable unit fo | nificant figure in 43.0
(b) 4
or gravitational cons
e kg ⁻¹ (b) Newton (| (c) 5
stant is | rton metre ² k _ễ | (d) 1
g (d) None of these | | 8. The dimension o (a) $[M^1L^4T^{-2}]$ | f physical quantity)
(b) [M²L²T⁻¹] | X in equation force (c)[M ² L ² T ⁻²] | $= \frac{4X}{Density} \text{ is given } (d)[\Gamma$ | ven by
M¹L ⁻² T⁻¹] | | 9. Which of the following pairs have same dimensions? (a) Energy and work (b) Angular momentum and work (c) Energy and Young's modulus (d) Light year and wavelength 10. Which of the distance measurements is most accurate? (1) 4.0 cm (2)4.00 cm 11. Give the name of two physical quantities whose units are same . 12. Which of the following is the most precise for measuring length: (a) a vernier caliper with 10 division on sliding scale . (b) a screw gauge of pitch 1mm and 100 divisions on the circular scale . | | | | | | 13 Write dimension of a,b and c in given equation force = $at^2+b/t+c$ where t represent time . 14. Find the dimension of α and β in given expression Force = $at^2+b/t+c$ where t represent time . density + β 15 Write dimension of a,b and c in given equation force = $at^2+\frac{b}{t+c}$ where t represent | | | | | | 13. White differential of a,b and c in given equation force = at $\frac{1}{t+c}$ where t represent | | | | | | time 16. Check the correctness of given equation $\tan\theta = v^2/rg$, where v , r and g express velocity, radius and gravitational acceleration. 17. A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m² s $^{-2}$. Suppose we employ a system of units in which the unit of mass equals α kg, the unit of length equals β m, the unit of time is Υ s. Show that a calorie has a magnitude 4.2 α^{-1} , β^{-2} , Υ^2 in terms of the new units. | | | | | | ante of time is 1 3. Show that a calone has a magnitude 4.2 a 1, p , in terms of the new units. | | | | | - 18. If the velocity of light (c), the constant of gravitation (G) and plank's constant (h) be chosen as the fundamental units, find the dimension of mass new system - 19. The equation of state for real gas given by $$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$ Determine the dimension formula of the constant a and b. - 22. (a) Mention some application of dimensional analysis - (b) How can physical quantity be converted from one system of unit to another? - (c) Convert one newton into dyne. - 21. Dimensional analysis of the equation (velocity)^x = (Density)^{-3/2} x(Pressure difference)^{3/2}. Find the value of x. - 22. Check the correctness of given equation: - (a) $\tan\theta = v^2/rg$, where v, r and g express velocity, radius and gravitational acceleration. (b) $$T = 2\pi \sqrt{\frac{GM}{R^3}}$$ Where T,G,M and R express time period ,gravitational constant ,mass of earth and radius of earth. - 23. Check by the method of dimensions whether the following equations are correct: - (a) Check the correctness of given equation $\tan\theta = v^2/rg$, where v, r and g express velocity, radius and gravitational acceleration - (b) (ii) s = ut + 1/2 at , where v represent initial velocity , u represent final velocity , s represent displacement and t represent time - 24. The centripetal force (F) acting on a body may depend upon mass of body (m), radius 0f the circle (r) and frequency of revolution (v). Derive the formula dimensionally. - 25.(a)Write merits and demerits of dimension. - (b)Derive an expression for time period (T) of a simple pendulum which may depend upon: - (i) mass of bob (m), (ii) length of pendulum (l) and (iii) acceleration due to gravity (g).